1 工程基本情况
热水解厌氧消化是近年来国内外污泥处理技术新的应用方向。国外美国华盛顿特区Blue Plains污水处理厂、英国泰晤士水务Davyhulme项目,国内北京的小红门、高碑店、槐房、高安屯、清河第二污泥处理中心项目,均采用热水解厌氧消化技术。其中,华盛顿特区Blue Plains污水处理厂和北京的小红门、高碑店污泥处理中心项目为现况污泥区域升级改造。本文以国内最早运行的热水解厌氧消化小红门污泥处理中心项目(以下简称小红门项目)为例,通过比对改造前后的消化系统运行情况,分析总结热水解厌氧消化与常规厌氧消化的区别与特点。
小红门污泥热水解厌氧消化项目位于小红门污水处理厂厂区东北部,污水处理厂建设规模为60万m³/d(Kz=1.3),峰值流量为78万m³/d。污泥处理系统包括5座卵形消化池、3座沼气柜、2套干式脱硫塔、1座湿式脱硫设备间、1座沼气锅炉房、2套废气燃烧器等。其中5座消化池均为一级消化池,采用卵型池型,单座池容为12 000 m³。
小红门项目于2008年11月12日首次启动,产生的沼气用于驱动水区的鼓风机和冬季供暖,多余的沼气通过废气燃烧器烧掉。2015年9月,该系统停止运转,开始实施热水解厌氧消化工程的升级改造。改造内容为增加热水解预处理装置,热水解采用Cambi技术,消化池仍采用原有消化池。2016年4月,改造完成后,消化系统(消化池运行组数减少为4座消化池)重新启动。2016年7月18日,随着热水解系统开始调试,常规厌氧消化调整为热水解厌氧消化。2017年3月9日,系统开始承接外来污泥的处理。
表1为2012年(改造前为常规厌氧消化的代表)和2017年(改造后为热水解厌氧消化的代表)污水处理厂进水水质、水量及消化系统情况说明。
2 基本操作比较
常规厌氧消化的基本操作有进泥、排泥、换热和搅拌等,热水解厌氧消化的不同之处是换热方式由升温调整为降温。尤其是夏季,要密切关注消化池的换热情况。
2.1 进泥
2.1.1 来源
2012年消化池的进泥比较单一,全部为水区的初沉污泥,平均2 258 m³/d;2017年消化池进泥为经热水解预处理后的混合污泥,平均1 429 m³/d,进入热水解预处理的污泥情况比较复杂,包括本厂污泥和外接污泥两部分。3月9日前,只处理本厂污泥,即初沉污泥和浓缩后的剩余污泥经预脱水而成的混合污泥。3月9日后,热水解系统既处理本厂污泥也处理外接污泥。外接污泥主要为吴家村、卢沟桥、五里坨、肖家河等污水处理厂的脱水泥饼,平均200 t/d(含水率83%)。对于热水解厌氧消化系统而言,需考虑外接污泥成分对消化池的影响。
2.1.2 进泥有机分与含水率
2012年消化池进泥主要为初沉污泥,进泥有机分平均值为63%,进泥含水率平均值为96%;2017年消化池进泥为混合污泥,进泥有机分平均值为56%,进泥含水率平均值为92%。
从图1可看出,随着外接污泥量、来源等发生变化,混合污泥中的有机分等波动较明显。3月9日前,污泥来源单一,有机分平均为67%;承担外接污泥处理后,整体消化池进泥有机分降低。但是,消化池进泥含固量明显增加,2017年较2012年进泥含固量提高2倍。
2.1.3 进泥中的挥发性脂肪酸(VFA)和碱度(ALK)
改造前后进泥中VFA和ALK的变化见图2。2012年消化池进泥中VFA平均值为513 mg/L,ALK平均值为2 107 mg/L;改造后2017年,消化池进泥中VFA平均值为915 mg/L,ALK平均值为1 881 mg/L,与2012年比较,VFA增加78%, ALK降低11%。
2.2 排泥
2012年消化池排泥采用顶部溢流排泥+泵辅助排泥。2017年消化池采用顶部溢流排泥或底部电动调节阀排泥,原有辅助泵系统拆除。从运行效果看,采用顶部溢流排泥方式,排泥比较顺畅,运行一年多的时间,没有出现溢流排泥堵塞现象。
2.3 换热
2012年消化池运行需加热,加热热源来自沼气拖动鼓风机的余热,不够的情况下由锅炉房的热水作为热源补充。2017年升级改造后,由于热水解预处理后出泥温度较高,消化池利用原有换热器进行降温换热,降温冷源为污水处理厂二沉池出水。
2.4 搅拌
2012年消化池采用压缩机进行搅拌。2017年,拆除原有压缩机,并进行压缩机进出气管的改造,更新替换为大功率压缩机。沼气搅拌方式不变,搅拌气量由1.67 m³/(min·m³池容)升至3.4 m³/(min·m³池容)。
3 消化效果比较
消化效果一般从消化污泥的泥质、有机物分解率、产气能力等指标进行衡量。
3.1 泥质
3.1.1 酸碱比
酸碱比为VFA和ALK的比值,改造前后消化池内酸碱比变化见图3。2012年消化污泥酸碱比平均值为0.025;2017年消化污泥酸碱比平均值为0.128。酸碱比增加的原因是热水解厌氧消化池进泥中VFA较常规厌氧消化进泥的VFA有明显的增加。